Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

نویسندگان

  • Weili Xiong
  • Christopher T Brown
  • Michael J Morowitz
  • Jillian F Banfield
  • Robert L Hettich
چکیده

BACKGROUND Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). RESULTS We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. CONCLUSIONS Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

The establishment of early life microbiota in the human infant gut is highly variable and plays a crucial role in host nutrient availability/uptake and maturation of immunity. Although high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the acquisition of comprehensive metaproteomic information i...

متن کامل

Antibiotic perturbation of the preterm infant gut microbiome and resistome.

The gut microbiota plays important roles in nutrient absorption, immune system development, and pathogen colonization resistance. Perturbations early in life may be detrimental to host health in the short and the long-term. Antibiotics are among the many factors that influence the development of the microbiota. Because antibiotics are heavily administered during the first critical years of gut ...

متن کامل

Impact of prematurity and nutrition on the developing gut microbiome and preterm infant growth

BACKGROUND Identification of factors that influence the neonatal gut microbiome is urgently needed to guide clinical practices that support growth of healthy preterm infants. Here, we examined the influence of nutrition and common practices on the gut microbiota and growth in a cohort of preterm infants. RESULTS With weekly gut microbiota samples spanning postmenstrual age (PMA) 24 to 46 week...

متن کامل

Late preterm birth has direct and indirect effects on infant gut microbiota development during the first six months of life

AIM Preterm infants display aberrant gut microbial colonisation. We investigated whether the differences in gut microbiota between late preterm and full-term infants results from prematurity or external exposures. METHODS This study comprised 43 late preterm infants (340/7 -366/7 ) and 75 full-term infants based on faecal samples collected following birth and at two to four weeks and six mont...

متن کامل

Establishment and development of intestinal microbiota in preterm neonates.

Microbial colonization of the infant gut is essential for the development of the intestine and the immune system. The profile of intestinal microbiota in the full-term, vaginally delivered, breast-fed infant is considered as ideally healthy. However, in preterm infants this process is challenging, mainly because of organ immaturity, antibiotics use, and hospital stay. To assist in a proper micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017